
LSTM surrogate model for SiGe HBT optimization

Grégoire Caron^{1,2}Anatoli Iouditski¹ Nicolas Guitard² Didier Céli²

Laboratoire Jean Kuntzmann, 700 avenue Centrale, 38400 Saint Martin d'Hères, France
STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, France

Heterojunction Bipolar Transistor (**HBT**) design and manufacturing is a process both lengthy and costly in terms of **water**, **electricity and chemicals**. To converge more rapidly towards an optimized design, one can resort to **TCAD** to simulate HBT electrical characteristics, but it also may require costly **computational resources**.

<u>Solution:</u> to train a Machine 10²¹ 35 NetActive **Learning** (ML) model [1] to **Model** ---- Germanium - 30 25 20 20 20 20 10²⁰ 600 approximate the TCAD simulator, f_{Ti} / (GHz) (e, 10¹⁹ b) / 0 10¹⁸ but much faster Germanium - 15 200 I] Build a adapted database 10¹⁷ II] Train a neural net model 0 0.6 0.7 0.8 0.9 TCAD III] Use the model for design 10^{16} V_{BE} / (V) x / (arb. unit)

I] Database construction

Fig.1: Surrogate modeling

60000

1.1

1.0

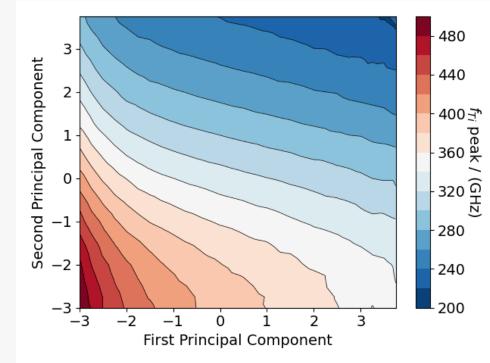
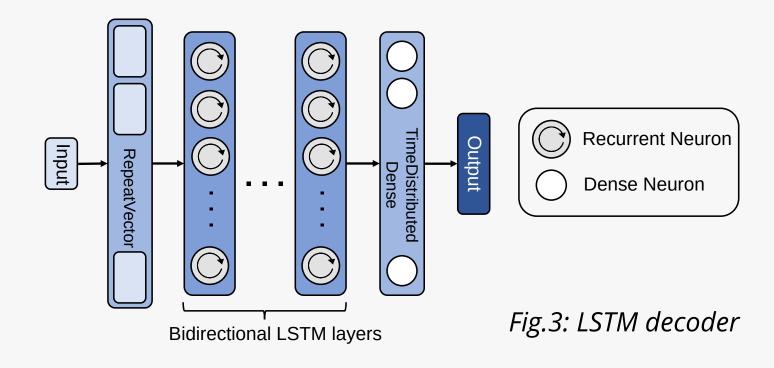

Contains parameters that describe synthetic HBT doping profiles and the corresponding TCAD-simulated electrical characteristics

Fig.2: Adaptive importance sampling

II] Surrogate model training


Use the database to train Neural Network models Goal: minimize loss (MSE) using gradient descent

Choice of **LSTM decoders** [3] that allow to take into account the regularity of voltage-dependent characteristics Leads to **35% to 60%** gain in prediction accuracy

Limit number of simulations = focus on suitable profiles [2]:

- Realistic: use **Monte Carlo** sampling with rejection, coupled to binary classification method **Support Vector Machine**
- Of technological interest (high transit frequencies fT): use adaptive **importance sampling**

III] Design space exploration

- Generate one million synthetic profiles
- Predict their characteristics very fast, using the surrogate models instead of months of costly simulations
- Impose process restrictions and client specifications
- Retain the best design

[1] Jie, X. et al., J Comput Electron 2024

Fig.4: PCA of profile parameters with fT

[2] Caron, G. et al., IEEE BCICTS 2022[3] Sutskever, I. et al., NeurIPS 2014