Last update in Photonics technology towards edge performance sensors Join us at IRT Nanoelec webinar On Monday, July 6th 2020, 5pm CET Last update in Photonics technology towards edge performance sensors Live webinar July 6th 2020

Ultra-low loss silicon waveguides in a mature photonics technology

Erwine Pargon¹ and Quentin Wilmart²

¹ Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP, LTM, Grenoble-France ² Univ. Grenoble Alpes, CEA-Leti, Grenoble, France

I. Hydrogen annealing treatment: a way to minimize scattering loss By Erwine Pargon (CNRS-LTM)

II. Hydrogen annealing treatment: a way to boost Si photonic platform performance

By Quentin Wilmart (CEA-Leti)

Silicon photonics applications at Leti

Lastupdatein Photonics technology towards edge performance sensors

High-speed interconnects for optical communications

- Telecom
- Datacom (datacenters)
- Computercom (on-chip communications between processors)

Szelag et al., SSDM, 2018

3D sensing

 Solid state beam steering: optical phase array for LIDAR. (using SiN waveguides)

N. A. Tyler et al. Optics Express, Feb. 2019

Neuromorphic photonics

- Neuromorphic computing
- Artificial intelligence

Linear operation (matrix multiplication) with large Mach Zehnder arrays

Quantum photonics

- Secure communications
- Q computing

F.A. Sabattoli et al. ICTON 2019

Silicon waveguides

- Silicon wire waveguides based on silicon-on-insulator (SOI) structures are key for highly integrated, ultra small optical devices
- □ High index contrats SiO₂/Si:
- \rightarrow Tight confinement of light
- \rightarrow Small waveguide
- \rightarrow Tight bends
- → Dense integration of components on a chip
- But Scattering losses dominate and compromise the Si platform performance

hotonics technology

4

How to decrease Si WG scattering loss?

Scattering losses are mainly due to the **sidewalls surface roughness** of Si WG after plasma patterning

Silicon waveguide after plasma etching

- ✓ Si Line Edge Roughness (LER) =2,5 nm (RMS=0.8nm) (with 248nm lithography)
- $\checkmark\,$ How to improve starting from this?
- How about H₂ annealing treatment after Si waveguide patterning?

H₂ annealing impact for Strip waveguides

 \rightarrow Si reflow: Rounded and swelled profile \rightarrow But width preserved

 \rightarrow Record loss@1310nm for 350*350 WG=1.1dB/cm

H₂ annealing impact for RIB waveguides

- \rightarrow Significant profile deformation
- → No SiO₂ interface at the bottom to limit the reflow

 \rightarrow But the profile deformation and CD increase could be detrimental to other optical passive devices

H₂ annealing optimization for RIB

850°C/20Torr/1min

350*150nm

X100K 300nm

✓ Better CD control ✓ Higher roughness \checkmark Slight loss increase **Decrease Temperature** ⊆<u>140</u> <u>135 n</u>m 1.2₁ 0.8 1.1 ₿ 120 0.6 1.0 0.7 T<850°C bottom increas 00 00 00 00 00 00 00 00 00 1.0 8.0 8.0 1.0 8.0 9.0 1.0 9.0 9.0 CER (JU) 0.6 0.5 0.4 0.3 0.2 0.5 0.7 40 nm 0.2 0.1 CD 0.0 T< 850°C 0.0 850°C 850°C T < 850°C 850°C T <850°C Lower temperature offers a good compromise between profile deformation and loss improvement in RIB, but losses in STRIP are of 1.8dB/cm

AND ELEC.

Photonics technology

towards edge performance sensors

H₂ annealing optimization for RIB

Photonics technology

towards edge performance senso

I. Hydrogen annealing treatment: a way to minimize scattering loss By Erwine Pargon (CNRS-LTM)

II. Hydrogen annealing treatment: a way to boost Si photonic platform performance

By Quentin Wilmart (CEA-Leti)

LETI's silicon photonics platform

- 200 mm Si photonics platform
- Substrates : 8" SOI 310nm
- > 200 steps
- 24 litho levels
- 40 metro/control steps

- Process building blocks
- Multilevel silicon patterning
- PN Silicon junctions
- Germanium photodetector
 - SiN waveguides
- Integrated resistance (heater)
- III-V for integrated hybrid laser
- Planarized BEOL : 2 AlCu routing levels

Photonic design kit with device library (MPW offer)

Platform developed for telecom, datacom, sensing and alternative computing

Low loss Si waveguides in the full photonics platform

Hydrogen smoothing annealing applied on the full silicon photonics platform

- Targeting ultra-low loss on 3 types of waveguide (strip, rib and deeprib)
- Si₃N₄ hard mask on top of Si
- Impact on passive components ? (grating couplers, transitions, MMI...)
- Impact on active devices ? (P-N junction for Mach Zehnder modulators - MZM)

Low loss Si waveguides in the full photonics platform

Hydrogen smoothing annealing applied on the full silicon photonics platform

- Targeting ultra-low loss on 3 types of waveguide (strip, rib and deeprib)
- Si₃N₄ hard mask on top of Si
- Impact on passive components ? (grating couplers, transitions, MMI...)
- Impact on active devices ? (P-N junction for Mach Zehnder modulators - MZM)

owards edge performance sens

Low loss Si waveguides in the full photonics platform

Live webmar July 5th 2020

Photonics technology

• Propagation loss measurement

- Efficient sidewall smoothening
- Good wafer uniformity
- Outperform advanced immersion lithography waveguides

0.1dB/cm (rib) ; 1.1dB/cm (strip) \rightarrow State-of-the-art!

Impact on passive devices

٠

2-silicon levels apodized grating fiber coupler

- ✓ Central wavelength
- ✓ Grating coupler insertion loss = 2dB / grating
- ~ no impact of annealing

Directional coupler transmission @1310nm ٠

Impact on Mach Zehnder Modulators (MZM)

 Mach Zehnder Modulator based on P-N junction for high data rate transmitter

Smoothing annealing on modulators:

- No effect of the smoothing annealing (>800°C) on the P-N junction
- Efficiency preserved ($V_{\pi}L_{\pi}$ = 1.6 V.cm with or without annealing)
- Total loss of MZM reduced by several dBs (1.5dB gain with 1mm-long MZM)

Conclusion

- H₂ smoothing annealing for sidewall roughness reduction
- State-of-the-art propagation losses @ 1310 and 1550 nm
- < 1dB/cm for strip WG ; 0.1dB/cm for rib waveguide
- Performances of passive and active components of the photonics library are preserved

 \rightarrow dBs power gain in complex circuits (Datacom, LIDAR, neuromorphics...)

Highlight

Low loss is essential for integrated Quantum photonics:

- Entangled photon pair generation in high-Q micro-resonators
- Manipulation of single photons in a large circuit

First results:

F.A. Sabattoli et al. ICTON 2019, "A Source of Heralded Single Photon Using High Quality Factor Silicon Ring Resonators"

H. El Dirani et al. GFP 2019, "Low-Loss Silicon Technology for High-Q Bright Quantum Sources"

